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Influence of buoyancy on drainage of a fractal porous medium
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Department of Applied Physics, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 4 February 2002; published 1 October 2002!

The influence of stabilizing hydrostatic pressure gradients on the drainage of a fractal porous medium is
studied. The invasion process is treated with invasion percolation~IP! in a gradient. Fractality is mimicked by
randomly closing bonds of a network. Two length scales govern the problem: the characteristic length of the
pore structurejs and a length scalejg above which buoyancy determines the structure of the cluster. When
js,jg the local structure of the invading cluster is governed by the interplay of capillarity and the fractal
properties of the pore space. Only parts of the backbone of the pore structure can be invaded. Therefore, the
obtained fractal dimension for small systemsL,js is much lower~1.40! than the one for ordinary IP~1.82!.
On larger length scales,js,L,jg , the fractality of the pore space is no longer important and the cluster grows
as in ordinary IP. WhenL.jg , gravity becomes important andjg scales with the bond numberB as jg

}B20.57, as in ordinary IP, while the fractal dimension becomes equal to the Euclidean one. Whenjg,js

gravity is already important on length scales where the fractality of the medium has to be considered too. On
small scalesL,jg , where only capillarity and fractality play a role the cluster structure is again characterized
by the fractal dimension of 1.40. On larger length scales,jg,L,js , gravity promotes a more efficient
invasion of the pore space and a different fractal dimension of 1.52 is found. The length scalejg no longer
follows ordinary IP scaling:jg}B20.69. WhenL.js the fractal dimension of the invading cluster equals the
Euclidean one andjg}B20.69.

DOI: 10.1103/PhysRevE.66.046301 PACS number~s!: 47.53.1n, 47.55.Mh, 64.60.Ak
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I. INTRODUCTION

Multiphase-flow phenomena in porous media play an
portant role in many industrial and environmental proces
@1#. The flow properties of an oil-water mixture through
specific porous rock determine the fraction of oil that can
obtained from this rock. Drying processes influence the
rability of construction materials. Moisture transport in s
is an important aspect of many agricultural issues. In
these processes the geometry of the pore space is one o
parameters that determines the transport properties. Ge
ally, the porous medium cannot be regarded as homogen
below a certain length scale@2# and the geometry of the por
space may have fractal properties@3#. For instance, the pore
spaces of sandstones are fractal and are self-similar ov
few orders of magnitude in length, varying from 10 Å to 10
mm @4#. The pore space of a widely used construction ma
rial such as concrete cannot be regarded to be homogen
on length scales of the order of a few centimeters. Conc
contains so-called aggregate particles, which are imper
able and range in size from 100mm up to 1 cm. In this study
we are interested in multiphase-flow phenomena on len
scales where the medium is not homogeneous anymore

The application of percolation models has improved o
knowledge of the microscopic origins of multiphase-flo
phenomena such as drainage, imbibition, and drying@5–7#.
In the majority of these percolation studies, the porous m
dium is represented as a regular network of pores~sites!
connected by throats~bonds!. The disorder of the system i
mimicked by varying the sizes of the pores and the thro
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Two different developments were of great importance. Fi
since the introduction of the invasion-percolation~IP!
scheme our understanding of the role of capillarity on
structure of liquid clusters has greatly improved@8–10#. In
IP a cluster grows by invading pores adjacent to the surf
of the cluster. In drainage, which is the phenomenon of
terest in this paper, the pore with the lowest pressure thre
old P5g/r is invaded~g and r are the surface tension an
throat radius respectively!. This means that the pore with th
widest throat is selected. Second, gradient percolation~GP!
@11,12# has provided tools for studying the influence of pre
sure gradients induced by buoyancy or viscous forces.
combining these two techniques the influence of buoya
and viscosity on the structure of invading clusters, and
particular the width of the invasion front, could be studi
@13–17#. Recently, this has been generalized to situatio
where the pressure gradients act both in the direction par
and perpendicular to the flow direction@18#.

As mentioned before, in the majority of these percolati
studies, the porous medium is represented as a regular
work of pores~sites! connected by throats~bonds!. As a con-
sequence the characteristic lengthjs of the medium always
equals the distance between two neighboring lattice poinl.
Hence, fractal pore structures or heterogeneities on len
scales larger than the average pore size cannot be acco
for. A way to mimic fractality in network models is by clos
ing randomly bonds or sites. The structure of the pore sp
is in this approach the same as the structure of a sam
spanning cluster in ordinary percolation~OP!. This has been
done in a few studies on invasion percolation@19,20# and
will be done in this study too. It was found that the fract
dimensionD of the invading cluster becomes dependent
the upper length scale of interest,L. WhenL is larger than
the correlation lengthjs the valueD51.8 is found for a two-
©2002 The American Physical Society01-1
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dimensional~2D! system@21#, which is the value for IP with
trapping already in nonfractal geometries. In the case wh
L,js , it was found that the value of the fractal dimension
much smaller, caused by the fact that dead ends in the po
system cannot be invaded. Another interesting way to ge
ate long-range structured porous network with fractal pr
erties is by a fractional Brownian motion~fBM ! @22–25#.
This proves relevant for flow through fractured porous ro
as encountered in oil recovery. In contrast to the comm
fractal porous geometries studied in this paper, such r
formations may have long-range structural correlations
increase with distance and that can be described by a
called Hurst exponentH. Above the cutoff length of the cor
relations ~above js! normal IP behavior is found withD
51.8. Below this cutoff length the structure of the invadi
cluster varies with the Hurst exponentH. The cluster struc-
ture changes from fractal to compact, when theH becomes
larger then 0.5.

When the porous medium has a long-range fractal st
ture, then fractality may play role on length scales wh
pressure gradients become important. In this particular st
we want to investigate the influence of gradients in the
drostatic pressure~buoyancy! on the drainage of a 2D porou
network with fractal properties. We limit ourselves to sta
lizing gradients. Fractality is introduced by randomly closi
a fraction 12p of all bonds~OP!. In Sec. II we subsequentl
discuss the model, the various existing regimes, and sca
results for these regimes. In Sec. III, results of IP simulatio
will be presented to investigate some unknown features
the scaling results. Finally, in Sec. IV the conclusions
drawn.

II. THEORY

A. Model

The pore space is mimicked by a square lattice with g
spacingl. The nodes of the network represent the pores
the bonds represent the throats. We assume that the vo
of the pore system is in the pores and the resistance re
from the throats. Fractality is generated by randomly clos
a fraction 12p of all bonds. Sites that are not connect
with either the top or the bottom of the network via a stri
of open bonds are closed too, because they are consider
be a part of the solid matrix. Radiir are assigned to the ope
throats according to a distribution functiona(r ). In this par-
ticular study, we use a uniform distribution with an avera
radius r̄ and a widthl.

Initially all open sites are filled with the wetting~w! fluid.
The nonwetting~nw! fluid invades from the bottom and th
w fluid escapes from the top. The invasion algorithm cons
of two fundamental steps. First, all interface sites that can
invaded are identified. These sites are the sites filled witw
fluid, which have neighboring sites filled with nw fluid an
do not belong to a trapped cluster. Second, the interface
with the lowest invasion potentialQ is selected and invaded
The invasion potentialQi j of an interface sitei invaded from
a sitej is
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Qi j 5
g

r i j
1Drgzi5

g

l S 1

r̃ i j
1Bz̃i D , ~1!

where g is the surface tension,Dr the density difference
between the nw andw fluid (Dr[rnw2rw), g the gravity
acceleration,r i j the radius of the throat between the sitei
and j ( r̃ i j [r i j / l ), zi the height of the porei ( z̃i[zi / l ), and
B is the bond number

B[
Drgl2

g
, ~2!

which is the ratio of the typical buoyancy forces and cap
lary forces on the pore level. It follows from Eq.~1! that two
different situations can be distinguished when the nw fl
invades from the bottom of the system:~a! the nw fluid is
heavier than thew fluid (B.0) and~b! the opposite situation
(B,0). WhenB.0 sites with lowz̃i are preferentially in-
vaded and a stable front develops. This is called invas
percolation in a stabilizing gradient. WhenB,0 the nw fluid
preferentially invades sites with highz̃i and fingering occurs,
which is called invasion percolation in a destabilizing gra
ent. Because we want to study invasion processes in a s
lizing gradient due to gravity, we limit the remainder of th
discussion toB.0.

B. Regimes of length scales

Two length scales will determine the behavior of the
vading cluster: the correlation length of the porous netwo
which in OP has a universal dependence on the fractionp of

js}up2pcu2n ~3!

and a length scale related with the influence gravity

jg}uBu2m. ~4!

Here n is the well-known correlation-length exponent~n
54/3 in 2D! andm is the exponent of interest. For IP on
regular network it was found thatm5n/(n11) @13#. For the
moment, we will assume that the general form of Eq.~4! also
holds for fractal porous networks. In Sec. III, we will prov
that this assumption is correct. It has to be remarked that
scaling laws only have a meaning forjs. l andjg. l . With
the length scalesL, js andjg a diagram can be constructe
see Fig. 1, which makes clear that five different regim
exist: ~i! invasion percolation in a fractal medium~IPF!, ~ii !
ordinary invasion percolation~IP!, ~iii ! invasion percolation
in a fractal medium in the presence of a gradient~IPFG!, ~iv!
ordinary invasion percolation in a gradient~IPG!, and ~v!
invasion percolation in a very strong gradient~IPGs!. These
regimes will be discussed below.

~i! The lower left part of Fig. 1 is the regime where ca
illary effects dominate the displacement processes and
structure has to be regarded as fractal (L,js ,jg). We will
call this IPF. It is known that in this regime the underlyin
structure of the pore network will influence the cluster stru
ture @20,25#. We expect that the massM of the invading
cluster scales in this regime with a fractal dimensionD0
1-2
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INFLUENCE OF BUOYANCY ON DRAINAGE OF A . . . PHYSICAL REVIEW E66, 046301 ~2002!
considerably lower than in standard IP. Beforehand we kn
that its value will be in between the fractal dimensions of
minimal path and the backbone of the porous fractal n
work, Dmin,D0,Db , and therefore 1.13,D0,1.62 in 2D
@26,27#, because the nw fluid can only invade the backbo
sites of the pore space and thew fluid will be trapped in the
dead ends. It is already known from simulations that
fractal structures created via site percolationD051.37 @20#.

~ii ! The upper left part of the diagram is the regime whe
fractality is not important anymore, but the displacements
still dominated by capillary effects (js,L,jg). On larger
length scales the structure of the invading cluster behave
in standard IP andD51.82 @21#; the latter value has bee
found for fractal structures generated via site percolat
@20#. This crossover to standard IP with trapping was a
found for IP on lattices generated with fBM. Below the co
relation length~cutoff length! the structure of the invading
cluster strongly depends on the underlying structure of
lattice; but on length scales larger than the cutoff length
invading cluster is characterized by a fractal dimensionD
51.82 @25#.

~iii ! The lower right part of diagram,jg,L,js , corre-
sponds to IPFG. Gravity significantly influences the d
placements process. The structure of the medium has st
be regarded as fractal. We expect that the value of the fra
dimensionD inf will be in between the values for the IP
cluster and the backbone of the pore space (D0,D inf
,Db). As in the IPF regime the invading cluster will onl
grow in the backbone of the porous structure, but in a m
efficient way than in the absence of gradients. Another in
esting point of this regime is the behavior of the correlat
length jg . We assume that in this regime Eq.~4! applies,
which will prove to be correct in Sec. III. In that section w
also calculate the value ofm in this regime and show that th
valuev for the exponentm satisfiesm5vÞn/(n11).

~iv! The upper triangle in the upper right part of Fig. 1
the regime where gravity only influences the invasion p
cess on length scales much larger than the correlation le

FIG. 1. A schematic overview of the different scaling regim
for the massM of the nonwetting cluster. The solid lines are th
boundaries of the various regimes. In these regimesM scales dif-
ferently with the system sizeL. The correlation lengthjg scales
differently with the bond numberB.
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of the pore structure (js,jg,L). Therefore, the invading
cluster behaves as in ordinary IPG and a front will deve
of which the widths scales proportional tojg . The expo-
nentm is thereforen/(n11), which is 4/7 in 2D@13,14#. On
large length scales the cluster is not fractal anymore and
mass scales withd ~the dimension of the system, which
two in our case!.

~v! The last regime we have to discuss is the one rep
sented by the lower triangle in the upper right part of t
diagram. In this regime fractality is not important on larg
length scales. However, gravity is important on length sca
on which the medium has to be regarded as fractal (jg,js
,L). We will call this IPGs. As in IPG a front develops. W
expect that width of this front is of the order ofjs and that
the gradient only influences the finer details of the front. T
correlation lengthjg will behave as in the IPFG regime. Th
mass of the invading cluster will scale with the system
mensiond.

C. Scaling relations

Figure 1 suggests that it should be possible to find a s
ing relation for the mass of the invading cluster, whi
should have the following form:

M S 1

jg
,

L

js
D5ALD0f S L

jg
,

L

js
D , ~5!

whereA is a constant andf the scaling function. By combi-
nation of the scaling relations shown in Fig. 1 and usingjs
5L, jg5L, and js5jg at the boundaries of the variou
regimes~the solid lines!, we arrive at

M5ALD0H xd2D0S y

xD D2D0

, x,y

yd2D0S x

yD D inf2D0

, x.y,

~6!

where

x5H L/jg , jg,L

1, jg.L
and y5H L/js , js,L

1, js.L.
~7!

It follows from Eq. ~7! that x,y refers to IP (jg.L) and
IPG (jg,L) regimes, wherejs,jg ~see Fig. 1!. In this par-
ticular case gravity does not play a role on length scale
which the fractal properties of the medium have to be tak
into account. Whenx.y, which means that the system
either in the IPFG (jg.L) or IPFs (jg,L) regime (js
.jg), the influence of gravity cannot be neglected on len
scales where the fractal properties of the medium have to
considered explicitly. This becomes visible in Eq.~6! by the
entering of the fractal dimensionD inf . The pointx5y51
corresponds with the IPF regime.

From our discussion of Fig. 1, it follows that the regim
IPF and IPFG (js.L) are the unknown and therefore inte
esting parts of the phase diagram. For these particular
gimes formula~6! can be written as
1-3



r

o
to
e

fo
ac
us
om
all

b

ro
a

s

d
ar
or
s

e
a

u-

iz

st
r
l-

nd

n
a

n
he
es
or
re
ta

.

, the

re-

ding

n
les.

of

H. P. HUININK AND M. A. J. MICHELS PHYSICAL REVIEW E66, 046301 ~2002!
M5A8LD0H ~LBm!D inf2D0, jg,L ~ IPFG!

1, jg.L ~ IPF!,
~8!

whereA8 is a constant and Eq.~4! is used. Whenjg,L, the
mass of the invading cluster depends on the bond numbeB.
BecauseD0,D inf andm.0, it follows from Eq.~8! that the
mass of the invading cluster increases withB. So, as in IPG,
gravity in this regime promotes a more efficient invasion
the pore structure by the nw fluid. The question still is
what extent this effect is modified by the fractality of th
pore network.

III. IP SIMULATIONS

In the preceding section, we have discussed scaling
mulas that describe the influences of gravity and of the fr
tality of the pore space on the structure of the invading cl
ter. However, the discussion of the IPF and IPFG is far fr
conclusive. First, it is assumed that on length scales sm
thanjs the invading cluster has a fractal structure and can
described with two fractal dimensions:D0 (B50) andD inf
(B5`). Second, we have assumed that the crossover f
B50 to B5` behavior can be described in the same way
it is done forjg.js by one length scalejg @Eq. ~4!#. Third,
the values of the introduced exponentsD0 , D inf , andm are
unknown. In this section, we want to address these issue
discussing IP simulations.

Simulations have been performed according to the mo
described in Sec. II A. All calculations are done on squ
lattices ofL32L. Periodic boundary conditions are used f
the long sides (2L) of the network. Properties are alway
calculated in the centralL3L part of the system to exclud
boundary effects. To avoid unnecessary computations,
simulations are done atp5pc and thereforejs5L. We have
distributed the throat radii according to a uniform distrib
tion that has a widthl/ l 50.2 and an average radiusr̄ / l
50.15. Every data point is an average of about 300 real
tions.

First, we have calculated the mass of the invading clu
in the central region as a function of the system size foB
5@0,100#. In Fig. 2 we have plotted the mass per unit ‘‘vo
ume,’’ i.e., the saturationML2d as a function ofL for B
50, 0.01, 0.1, and 100. By fitting the data points correspo
ing with B50 ~dashed line! andB5100 ~upper solid line!,
we have obtainedD051.39760.004 and D inf51.519
60.005. The value ofD0 is close to the value obtained i
calculations where site percolation is used to introduce fr
tality in the medium@20#. To clarify the different scaling
behavior of the two situations,B50 andB5100, we have
visualized both the nw phase andw phase for aL5100 sys-
tem, see Fig. 3. It can be seen that both the degree of bra
ing becomes higher and the branches grow longer w
gravity becomes important on the length scale of inter
This indicates that the loops in the backbone of the p
space are invaded more efficiently in the presence of p
sure gradients due to gravity, resulting in a higher frac
04630
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dimension. As expected, we have found thatDmin,D0
,Dinf,Db . That D inf,Db can be understood as follows
Consider a loop consisting of two stringsI andJ of sites and
bonds that have maximum heightszI

max,zJ
max, see Fig. 4. At

B5` both strings are invaded such that nw/w interfaces in
these strings are always at the same height. Therefore
maximum height reached in both strings always equalszI

max.
As a consequencew fluid is trapped in that part of stringJ
lying between the point wherez5zI

max and the point whereI
and J come together, and the mass of the nw cluster is
duced.

For intermediate values ofB two different scaling regimes
can indeed be distinguished, as proposed in the prece
section; this is seen in Fig. 2. For smallL all curves coincide
andM}LD0. This indicates that gravity has no influence o
the structure of the invading cluster on such length sca
Above a certain value ofL(5jg) the cluster grows as in the

FIG. 2. The saturation of the system by the invading cluster
nw fluid, ML2d. The upper solid line (B5100, ML2d

}L20.48160.005) and the dashed line (B50, ML2d}L20.60360.004)
are fitting results. All solid lines obey the same scaling law.

FIG. 3. The invading cluster at breakthrough in anL5100 sys-
tem: ~a! B50 and~b! B5100. In this picture I refers to pores filled
with nw fluid, II to pores filled with nontrappedw fluid, III to pores
that contain trappedw fluid, and IV to the solid phase.
1-4
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caseB5`, M}LD inf. In principle, it is possible to check th
validity of Eq. ~4! and find the value of the exponentm
directly by plotting the crossover length as a function ofB.
However, for reasons of accuracy we choose a different
proach. In Fig. 5, we have plottedML2D inf as a function of
B. By using Eq. ~8! and fitting the L5200 data forB
5@0.01,3#, we obtain m50.6960.01. This figure proves
that the assumption made in Sec. II, to derive scaling form
las, that the expression~4! also holds forjg,js , is correct.
Furthermore, we can conclude that fractality significan
modifies the value ofm. The background of this particula
value is unclear to us, because we have not been ab
derive Eq.~3! from microscopic arguments for the situatio
jg,js .

Finally, we have plottedML2D0 as a function ofLBm in
Fig. 6 for a variety of values ofL andB. We have used the
previously found valuesD051.40 andm50.69. Most of the
data points collapse on one single master curve. Deviat
occur for high values ofLBm, where the correlation length

FIG. 4. The invasion of a loop by a nw fluid in the presence
a strong buoyancy force,B5`. The arrows mark the flow direc
tion. Because a fraction of thew fluid is trapped in the upper part o
the loop, the fractal dimension of the nw cluster will be lower th
the fractal dimension of the backbone of the pore space.

FIG. 5. Scaled mass as function ofB for different lattice sizesL.
The solid line is a fit through the data points ofL5200 for B
5@0.01,3#.
04630
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saturates at the lowest possible value: the grid spacingl. We
can conclude that Fig. 6 proves that the system indeed ob
scaling in the form of Eq.~8!.

IV. CONCLUSIONS

We have studied drainage of a fractal porous medium
the presence of a stabilizing hydrostatic pressure gradi
Three different length scales govern the problem: the sys
sizeL, the correlation length of the porous mediumjs , and a
length scalejg above which gravity determines the structu
of the fluid cluster.

When js,jg , the large-scale (L.js) behavior of the
nonwetting liquid cluster is the same as in the case of o
nary invasion percolation in a gradient~with trapping!: M
}L1.82 and jg}B20.57. Gravity then does not play a role i
length scales where the fractality of the medium does pla
role and vice versa. Deviations in the mass-size scaling oc
on small length scales (L,js), where the interplay of cap
illary forces and the fractality of the pore space is importa
In this regime, we have obtained for the nonwetting cluste
fractal dimensionD0.1.40, which is caused by the fact th
the dead ends of the pore space cannot be invaded by th
fluid.

In the case thatjs.jg gravity is already important on
length scales where the fractality of the medium has to
taken into account. At very small length scales (L,jg) the
growth of the invading cluster can again be described w
D0 . However, on larger length scales (L.jg) a larger fractal
dimension has been found,D inf.1.52. Gravity promotes a
more efficient invasion of the backbone of the pore spa
The correlation length now scales asjg}B20.69. More work
has to be done, to understand the value of the exponentm in
this regime.
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FIG. 6. The scaling function for the mass in the regim

jg,js .
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